lcjfletcher lcjfletcher
  • 04-04-2021
  • Chemistry
contestada

The half-life of I-37 is 8.07 days. If 25 grams are left after 40.35 days, how many grams were in the original sample?

Respuesta :

maacastrobr
maacastrobr maacastrobr
  • 09-04-2021

Answer:

800 g

Explanation:

We can express the decay of I-37 using the formula:

  • Final Mass = Initial Mass * [tex]0.5^{\frac{Time}{Half-Life} }[/tex]

We input the data:

  • 25 g = Initial Mass * [tex]0.5^{(\frac{40.35}{8.07})}[/tex]

And solve for Initial Mass:

  • 25 g = Initial Mass * [tex]0.5^{5}[/tex]
  • 25 g = Initial Mass * 0.03125
  • Initial Mass = 800 g

Meaning that out 800 grams of I-37, only 25 will remain after 40.35 days.

Answer Link

Otras preguntas

10y + 2y^2 - 6y^3 + 8y^3=? I WILL GIVE BRAINLIEST TO THE FIRST TO GET IT RIGHT!!!!
How many solutions does the nonlinear system of equations graphed below have? 10 - 10 10 - 10 A. Zero B. Four C. One D. Two
How are rocks related to the surface layer of the Earth? O The surface of the Earth can affect how rocks are formed. O Rocks provide clues on how the surface of
I have to match the graph to the correct function family can somebody please help
Please help this is also easy ?!?
✓ 12.6 4. A car salesman averages 2.75 sales per day (H = 2.75). Use the Poisson distribution to find the probability that in a randomly selected day the number
Why is it appropriate that Galileo Galilei is known as the Father of Astronomy?
A pharmaceutical company is testing a new antibiotic. The number of bacteria present in a sample when the antibiotic is applied is 100,000. Each hour, the numbe
(2, 100) and (3, 1000)
please help me out with this